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Abstract 

Strong 0-convexity is a generalization of standard convexity, defined with respect to a 
fixed set O of hyperplanar orientations. We explore the properties of strongly C'-convex sets 
in two and more dimensions and develop a mathematical foundation of strong convexity. 
We characterize strongly C'-convex polytopes, flats, and halfspaces, establish the strong 
(9-convexity of the afhne hull of a strongly 0-convex set, and describe conditions under 
which two orientation sets yield the same collection of strongly 0-convex sets (orientation 
equivalence). 

We identify some of the major properties of standard convex sets that hold for strong 
0-convexity. In particular, we establish the following results: 

• The intersection of a collection of strongly O-convex sets is strongly O-convex 

• For every point in the boundary of a strongly C^-convex set, there is a supporting 
strongly 0-convex hyperplane through it 

• A closed set with a nonempty interior is strongly (9-convex if and only if it is the 
intersection of the strongly 0-convex halfspaces that contain it 



1    Introduction 
Convex sets are a comparatively recent yet fruitful concept in geometry, which has applica- 
tions in optimization, statistics, geometric number theory, functional analysis, and combi- 
natorics [Klee, 1971, Preparata and Shamos, 1985], as well as in more practical areas, such 
as VLSI design, computer graphics, architectural databases, and geographic databases. For 
example, the convex hull of a geometric object is often used as an approximation of the ob- 
ject. As another example, decomposing a polygon into convex subpolygons makes polygonal 
processing easier to handle. 

Researchers have studied many notions of nontraditional convexity along with standard 
convexity, such as orthogonal convexity [Montuno and Fournier, 1982, NichoU et al, 1983, 
Ottmann et a/., 1984], finitely oriented convexity [Giiting, 1983b, Widmayer et a/., 1987, 
Rawlins and Wood, 1987], restricted-orientation convexity [Rawlins, 1987, Rawlins and 
Wood, 1991, Schuierer, 1991], NESW convexity [Lipski and Papadimitriou, 1981, Soisalon- 
Soininen and Wood, 1984, Widmayer et al, 1987], and link convexity [Bruckner and Bruck- 
ner, 1962, Valentine, 1965, Schuierer, 1991]. 

Rawlins introduced the notion of planar strong convexity during his investigation of 
restricted-orientation visibiUty [RawHns, 1987]. This notion is stronger than standard con- 
vexity, hence the name. Rawlins and Wood [Rawlins and Wood, 1988, Rawlins and Wood, 
1991] studied the properties of strongly convex sets in two dimensions and demonstrated 
that strong convexity generalizes not only standard convexity but also the notions of ortho- 
rectangles (that is, rectangles whose edges are parallel to the coordinate axes) and C-oriented 
polygons [Giiting, 1983a, Giiting, 1984]. The work on strong convexity adds to our under- 
standing of convexity in general and may help us to develop simpler and more efficient 
convexity algorithms. 

The research on nontraditional notions of convexity has so far been restricted to two 
dimensions. The work reported here is the first step in exploring nontraditional convexity 
in higher dimensions. In this first paper in a series [Fink and Wood, 1995a, Fink and Wood, 
1995b], we extend the notion of strong convexity to higher dimensions. This extension is a 
generalization of planar strong convexity and of standard multidimensional convexity. 

We explore the properties of strong convexity in higher dimensions and demonstrate 
that these properties are much richer than the properties of planar strongly convex sets. We 
establish analogs of the following basic properties of convex sets: 

Visibility For every two points of a convex set, the straight segment joining them is wholly 
contained in the set. 

Intersection The intersection of a collection of convex sets is a convex set. This property 
is the basis for the definition of the convex hull of a given set, which is the smallest 
convex set containing the given set. 

Supporting planes For every point in the boundary of a convex set, there is a hyperplane 
through it that supports the set. 

Halfspace intersection A closed convex set is the intersection of the halfspaces that con- 
tain it. 
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Figure 1: Strong ortho-convexity. 

Except for the intersection property, these properties are defining characteristics of convex 
sets. 

We also characterize strongly 0-convex polytopes, flats, and halfspaces, establish the 
strong 0-convexity of the afiine hull of a strongly 0-convex set, and describe conditions under 
which two orientation sets yield the same collection of strongly 0-convex sets (orientation 
equivalence). 

The article is organized as follows. In Section 2, we briefly describe the notion of strong 
convexity in two dimensions and give basic properties of planar strongly convex sets. In 
Section 3, we generalize the notion of strong convexity to higher dimensions. In Section 4, we 
present basic properties of higher-dimensional strongly convex sets. In Section 5, we explore 
properties of strongly convex flats. In Section 6, we describe strongly convex halfspaces and 
present analogs of the supporting-planes and halfspace-intersection properties for strongly 
convex sets. Finally, we conclude, in Section 7, with a summary of the results and a discussion 
of future work. 

2    Strong convexity in two dimensions 

We begin by reviewing the notion of strong convexity in two dimensions [Rawlins, 1987] 
and exploring the basic properties of planar strongly convex sets. Rawlins introduced this 
notion as part of his research on restricted-orientation visibiHty. He defined strong convexity 
through a generalized visibility, by analogy with standard convexity. 

We can describe convex sets in terms of visibiHty: a set is convex if every two points of 
the set are visible to each other. In other words, for every two points of a convex set, the 
straight segment joining these points is wholly contained in the set. We introduce a new 
type of visibiHty by replacing straight segments with different type of objects, called blocks, 
and define strong convexity in terms of this new visibiHty. 

We first present the notions of ortho-rectangles, ortho-blocks, and strong ortho-visibility. 
An ortho-rectangle is a rectangle whose sides are parallel to the coordinate axes [Giiting, 
1983a]. The ortho-block of two points p and q is the minimal ortho-rectangle that contains 
p and q (note that p and q are opposite vertices of this ortho-rectangle; see Figure lb). li p 
and q are on the same vertical or horizontal line, then the ortho-block of p and q is just the 
straight segment joining p and q (Figure Ic). 

We define strong ortho-convexity using ortho-Mock visibility: a set is strongly ortho- 
convex if, for every two points of the set, the ortho-block of these two points is wholly 
contained in the set. For example, the rectangles in Figures 1(d) and 1(e) are strongly 
ortho-convex (some ortho-blocks contained in these rectangles are shown by dashed lines). 
On the other hand, the square in Figure 1(f) is not strongly ortho-convex, because the dashed 
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Figure 2: Planar strong convexity. 

ortho-block is not in the square. 
The following two properties of strongly ortho-convex sets are straightforward to prove: 

Lemma 1 

1. A set is strongly ortho-convex if and only if it is an ortho-rectangle. 

2. The intersection of a collection of strongly ortho-convex sets is strongly ortho-convex. 

Thus, after all, strongly ortho-convex sets are quite simple objects. These objects inherit 
two important properties of convex sets: visibility and intersection. Ortho-convex sets can 
be defined in terms of visibihty and the intersection of a collection of ortho-convex sets is 
always an ortho-convex set. 

Strong 0-convexity is a generalization of strong ortho-convexity. We obtain this gener- 
alization by replacing the two coordinate axes with a (finite or infinite) set of lines through 
a fixed point o. We denote this set of Hnes by O and call it an orientation set. An example 
of a finite orientation set is shown in Figure 2(a). A straight line parallel to one of the lines 
of O is called an 0-oriented fine. 

We now define the 0-block of two points p and ^, which generalizes the notion of the 
ortho-block. Let us draw all 0-oriented rays with endpoint p and choose the two of them 
closest to q (see Figure 2b). The two selected rays, with the common endpoint p, are the 
boundary of an angle with vertex p; this angle contains q. 

If O is an infinite set, it may not be closed and, hence, we may not be able to choose the 
ray closest to q. For example, consider the orientation set in Figure 2(c). All lines in the 
shaded area are elements of O and the dotted horizontal line is not in O; this orientation set 
is not closed. If O is not closed, we have to use a limit in selecting the two rays. We choose 
two rays with common endpoint p such that, for each of the two selected rays, (1) there is 
a sequence of 0-oriented rays convergent to this ray and (2) there are no 0-oriented rays 
with endpoint p between this ray and the point q (see Figure 2d). The two selected rays are 
again the boundary of an angle with vertex p; this angle contains q. 

Similarly, we draw the 0-oriented rays from q closest to p and obtain the angle with 
vertex q whose boundary is formed by these rays (Figure 2e). The 0-block of p and q is the 
intersection of these two angles (the shaded parallelogram in Figure 2e). As a special case. 



if the line through p and q is (9-oriented, then the C)-block of p and q is just the straight 
segment joining p and q (Figure 2f). 

We define strong C-convexity much in the same way as strong ortho-convexity, using 
0-blocks instead of ortho-blocks. 

Definition 1 (Strong 0-convexity)   A set is strongly O-convex if, for every two points 
of the set, their 0-block is contained in the set. 

Let us denote the orientation set in Figure 2(a) by Oa and the orientation set in Fig- 
ure 2(c) by Oc. Then, the polygon in Figure 2(g) is strongly Oa-convex and strongly Oc- 
convex (two Oa-blocks contained in this polygon are shown by dashed lines). On the other 
hand, the circle in Figure 2(h) is neither strongly Oa-convex nor strongly Cc-convex, since 
the block shown by dashed lines, which is an Oa-block as well as Oc-block, is not in the circle. 
Finally, the polygon in Figure 2(i) is strongly 0c-convex, but is not strongly Oa-convex. 

The following properties of strongly 0-convex sets readily follow from the definition 
(Properties 1-4 and 6 were stated by Rawlins [Rawhns, 1987]). 

Lemma 2 

1. Every translation of a strongly 0-convex set is strongly 0-convex. 

2. (Intersection) // C is a collection of strongly 0-convex sets, then the intersection 
r\C of this collection is also strongly 0-convex. This property is the basis of the 
definition of the unique strongly 0-convex hull of a given set, which is the smallest 
strongly 0-convex set containing the given set. 

3. For every orientation set O, every strongly 0-convex set is standard convex. 

4- U^1 ^ ^2, then every strongly Oi-convex set is strongly O^-convex. 

5. For two orientation sets, 0\ and O2, through the same point o, strong Oi-convexity is 
equivalent to strong O^-convexity if and only i/Closure(Oi) = Closure(C'2). 

6. For a closed orientation set O, a polygon is strongly 0-convex if and only if it is convex 
and its edges are 0-oriented. 

Proof. 
(1) By definition, a translation of an C>-oriented line is an O-oriented line. Therefore, 

translations of 0-blocks are C>-blocks and translations of strongly C-convex sets are strongly 
C^-convex sets. 

(2) If C is a collection of strongly 0-convex sets, then, for every two points p and q of 
the intersection p C., the 0-block of p and 5 is a subset of every element of C and, hence, 
0-block(p,^) is a subset of {\C. 

(3) For every two points p and q., the straight segment joining them is contained in 
0-block(p, ^). Therefore, for every two points of a strongly 0-convex set, the segment 
joining them is contained in the set. 

(4) Suppose that Oi C O2. We readily conclude from the definition of 0-blocks that, 
for every two points p and q, 02-block(j), g) C Oi-block(p,^).  Therefore, if P is strongly 
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Figure 3: Proof of Lemma 2. 

Ci-convex, then, for every two points of P, the C)2-block of these points is in P and, hence, 
P is strongly 02-convex. 

(5) Let Oi-c\ be the closure of Oi and 02-ci be the closure of 0-2. By definition, 
the notions of 0i-blocks and Oi-d-blocks are equivalent; therefore, strong Oi-convexity is 
equivalent to strong Oi-d-convexity. Similarly, strong 02-convexity is equivalent to strong 
02-ci-convexity. If 0\-c\ = Oi-ch then strong Oi-convexity is equivalent to strong O2- 
convexity. 

Suppose, conversely, that Oi-c\ 7^ 02-c\- Without loss of generality, we assume that 0\-ci 
is not a subset of 02-c\- Let p and q be two points such that the line through them is an 
01-ci-line and not an 02-cl-line. Then, the segment joining p and q is strongly Oi-convex 
but not strongly C'2-convex. 

(6) If a polygon P is not convex, then it is not strongly 0-convex by Part 3 of the proof. 
If some edge of P is not C'-oriented, then, for any two distinct points p and q of this edge, 
the 0-block of p and q is not in P (see Figure 3a) and, hence, we again conclude that P is 
not strongly C)-convex. 

Now suppose that P is a convex polygon with C-oriented edges. Then, P is the in- 
tersection of several halfplanes whose boundaries are 0-oriented lines. We prove that P is 
strongly 0-convex by demonstrating that each of these halfplanes is strongly C)-convex: we 
show that, for every halfplane with C-oriented boundary / and every two points p and q of 
the halfplane, the 0-block of p and q is in the halfplane. Let Ip be the line through p parallel 
to / and Iq be the line through q parallel to / (see Figure 3b). Since Ip and Iq are 0-oriented, 
0-block(p, ^) is contained in the "strip" between Ip and /,; therefore, 0-block(p, g) is in the 
halfplane. We conclude that P is the intersection of several strongly 0-convex halfplanes; 
therefore, P is strongly (9-convex by Part 2 of the proof. □ 

3    Strong convexity in higher dimensions 

We now extend the notion of strong convexity to (/-dimensional space Tf^. We assume that 
the space Tf^ is fixed; however, all the results are independent of the particular value of d. We 
introduce a set O of hyperplanes through a fixed point 0, define 0-blocks in d dimensions, 
and use 0-blocks to define strongly 0-convex sets. 

A hyperplane in d dimensions is a subset of TZ"^ that is a (c? — l)-dimensional space. For 
example, hyperplanes in three dimensions are the usual planes. Analytically, a hyperplane 
is the set of points satisfying a linear equation, aix-^ + a2X2 + ... -|- a^xj, = b, in Cartesian 
coordinates. Two hyperplanes are parallel if they are translations of each other. Analytically, 
two hyperpanes are parallel if their equations differ only by the value of b. 



A 

Z 
1/ 
(a) (b) 

Figure 4: Orientation sets in three dimensions. 

Definition 2 (Orientation sets and C^-oriented hyperplanes) An orientation set O 
in d dimensions is a set of hyperplanes through a fixed point a. A hyperplane parallel to one 
of the elements of O is called an O-oriented hyperplane. 

Note that every translation of an C)-oriented hyperplane is an C)-oriented hyperplane and 
a particular choice of the point o is not important. When we speak of several different 
orientation sets in 71'^, we always assume that the elements of all these sets are through the 
same common point o. 

In Figure 4, we show two examples of finite orientation sets in three dimensions. The first 
set contains three mutually orthogonal planes; it gives rise to the three-dimensional analog 
of strong ortho-convexity. The second orientation set consists of four planes. 

The definition of C-blocks in higher dimensions is more complex than the definition of 
planar 0-blocks. First, we define the notion of a layer of two points, p and q. Let H he a, 
hyperplane from the orientation set O, Hp be the hyperplane through p parallel to H, and 
Hq be the hyperplane through q parallel to 7i. The "layer" of space between the planes Hp 
and Hq is called the H-layer of p and q. Analytically, the layer can be defined as follows. 
Suppose that Hp is described by equation aiXi + a2X2 + ... + adXd = bp and Hq is described 
by equation aiXi + a2X2 + ... + adXd = bg (since Hp and Hq are parallel, all coefficients are 
identical). For simpHcity, we assume that bp <bq. Then, the H-layer of p and q is described 
by the inequality 

bp < aiXi + a2X2 + ... + adXd < bq. 

The 0-block of p and q is the intersection of all the O-onenieA layers of p and q: 

e>-block(p, ^) =  PI ?i-layer(p,^). 

In other words, a point is in the C^-block of p and q if, for every 0-oriented hyperplane H^ 
the point is between Hp and Hq. 

In two dimensions, we may define 0-blocks in the same way: a planar layer is the "layer" 
between two parallel lines and the 0-block of two points is the intersection of all C'-oriented 
layers of these two points. This definition is equivalent to the definition of planar C)-blocks 
in Section 2, as illustrated by Figure 5. 

We show some examples of three-dimensional 0-blocks in Figure 6. For the three-element 
orientation set in Figure 6(a), 0-h\ocks are parallelepipeds with 0-oriented facets. The 
orientation set in Figure 6(b) contains four planes and gives rise to more complex C-blocks. 
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Figure 5: In two dimensions, the intersection of all the 0-oriented layers is the C^-block. 
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Figure 6: O-blocks in three dimensions. 

We define strong 0-convexity in higher dimensions in the same way as in two dimensions. 

Strong Convexity A set in 71'^ is strongly 0-convex if, for every two points of the set, 
their 0-hlock is contained in the set. 

We show some examples of strongly 0-convex polytopes in Figure 7. For the orientation set 
in Figure 7(a), strongly 0-convex polytopes are parallelepipeds with 0-oriented facets. The 
four-element orientation set of Figure 4(b) gives rise to more complex strongly 0-convex 
objects (Figure 7b); the facets of these objects are also C-oriented, as we show in Section 6 
(see Corollary 22). 

4    Basic properties of strongly convex sets 

We present some simple properties of strongly 0-convex sets in higher dimensions and com- 
pare them with properties of planar strongly 0-convex sets. 

Let us recall the properties of planar strong 0-convexity presented in Section 2 (see 
Lemma 2). We readily generaUze Properties 1-3 to higher dimensions: these properties hold 
in 71'^ and their proofs are the same as the proofs in IZ'^. The most important of them is 
Property 2, which is a generalization of the intersection property for standard convex sets: 
the intersection of a collection strongly 0-convex sets is strongly 0-convex. Property 4 also 
holds in higher dimensions, as we demonstrate in Corollary 4. 

M 
^ 

7^ 
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Figure 7: Strongly 0-convex sets. 
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Figure 8: Proof of Lemma 3. 

Property 5 holds only in one direction: if two orientation sets, Oi and O^., have identical 
closures, then strong (9i-convexity is equivalent to strong 02-convexity (see Corollary 4). 
The converse does not hold: strong convexity for 0\ and O2 may be equivalent even if 
Closure(0i) 7^ Closure(C)2) (see Example 1 in Section 5). We present a necessary and 
sufficient condition for the equivalence of strong C^i-convexity and strong C)2-convexity in 
Section 5. 

For Property 6, we show that its analog holds in higher dimensions for finite orientation 
sets (Corollary 22): a polytope is strongly 0-convex if and only if it is convex and its facets 
are C^-oriented. For an infinite orientation set, a polytope may be strongly O-convex even if 
its facets are not 0-oriented (see Section 6). 

Since strongly 0-convex sets are defined in terms of 0-block visibility, we first compare 
C)-blocks for different orientation sets. 

Lemma 3 

i- U ^1 ^ ^2, then, for every two points p and q, 02-block{p,q) C Oi-hlock{p^q). 

2. If O2  is the closure of Oi,  then, for every two points p and q,  Oi-block(p, q)  = 
02-block(p,q). 

Proof. 
(1) If Oi C O2, then every Ci-oriented layer is 02-oriented. Since the 0-block of two points 
is defined as the intersection of all 0-oriented layers, we conclude that, for every two points, 
their 02-block is a subset of their Oi-block. 

(2) If O2 is the closure of Oi, then Ox C O2; therefore, for every two points p and q, 
02-hlock{p,q) C Oi-hlock{p,q). We prove the converse inclusion by showing that, for every 
(92-oriented layer of p and q, Ot-hlock{p,q) is a subset of this layer; that is, if a point u is 
not in the layer, then it is not in the Oi-block(p, q) either. 

Let 'H-layer(p, q) be an C)2-oriented layer, with boundary hyperplanes Hp (through p) and 
Tig (through q), and let u be a point outside of 7T^-layer(p, q). Without loss of generality, we 
assume that either Hp is between u and Tig (see Figure 8) or Tip = Hq. If Hp is Oi-oriented, 
then Ci-block(p,g) C 'H-layer(p, 5) and, hence, u ^ 0i-block(p, ^). UHp is not Oi-oriented, 
then there is a sequence of 0i-oriented hyperplanes through p convergent to Hp. For some 
element H' of this sequence, q and u are "on different sides" of H' (Figure 8). The layer of 
p and q parallel to H' is Oi-oriented and u is outside of this layer; therefore, we again have 
u^Orhlock(p,q). □ 

Combining these properties of (9-blocks and the definition of strong C)-convexity, we 
immediately obtain the following results. 
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Corollary 4 

i- If Oi C O2, then every strongly 0\-convex set is strongly 02-convex. 

2. If02 is the closure ofO\, then strong 0\-convexity is equivalent to strong 02-convexity. 

According to the second part of this result, we may restrict our attention to the study of 
strong 0-convexity for closed orientation sets, because strong convexity for every orientation 
set is equivalent to strong convexity for its closure. 

We next show that 0-blocks are strongly C^-convex. 

Lemma 5   The 0-block of every two points is strongly 0-convex. 

Proof. We consider the 0-block of two points p and q. We have to show that, for every two 
points u and v in 0-h\ock{p,q), we have 0-h\ock{u,v) C 0-hlock(p,q). We note that, for 
every H ^ O, the points u and v are in the 7^-layer of p and q; therefore, W-layer(ti, v) C H- 
la,YeT{p,q). Since the 0-block of two points is the intersection of all their (9-oriented layers, 
we conclude that 0-hlock{u,v) C 0-hlock{p,q). □ 

According to Property 3 of strong 0-convexity (see Lemma 2), strongly 0-convex sets 
are standard convex. We now present a condition for the equivalence of strong and standard 
convexity 

Lemma 6 Every convex set is strongly 0-convex if and only if every straight line is strongly 
0-convex. 

Proof. Every Une is a convex set. Therefore, if every convex set is strongly 0-convex, then 
every line is strongly 0-convex. 

Suppose, conversely, that every line is strongly 0-convex. Then, for every two points p 
and q, their 0-block is just the straight segment joining them: if the 0-block were a superset 
of this segment, then the line through p and q would not be strongly 0-convex. Therefore, 
the 0-block visibility is just standard visibihty and strong 0-convexity is equivalent to 
standard convexity. n 

5    Strongly convex flats 

We now explore the properties of strongly 0-convex flats. A flat, also known as an affine 
variety, is a subset of 1Z'^ that is itself a lower-dimensional space. For example, points, 
straight lines, two-dimensional planes, and hyperplanes are flats. 

First, we characterize strongly 0-convex flats in terms of 0-oriented flats, which are 
the intersections of 0-oriented hyperplanes. We show that, for a finite orientation set, a 
flat is strongly 0-convex if and only it is 0-oriented. For an infinite orientation set, every 
0-oriented flat is strongly 0-convex, but the converse does not hold: a flat may be strongly 
0-convex even if it is not 0-oriented. 

Then, we consider the set O of all strongly 0-convex hyperplanes through 0 and describe 
strong 0-convexity with respect to this new orientation set O. For finite O, the orientation 
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set O is identical to 0\ however, if O is infinite, then O may be a superset of O. We show 
that strong 0-convexity is equivalent to strong 0-convexity and use this result to derive a 
necessary and sufficient condition for the equivalence of strong convexity with respect to two 
different orientation sets. Finally, we estabUsh the strong 0-convexity of the affint hull of 
a strongly C^-convex set, which is the minimal flat containing the set. 

We begin by defining the notion of a flat. Analytically, a k-dimensional flat in d dimen- 
sions is a subset of TZ'^ that is represented in Cartesian coordinates as a system of {d — k) 
independent linear equations. The whole space IZ'^ is also considered to be a flat. For ex- 
ample, in three dimensions, there are four types of flats: points, lines, planes, and the whole 
space 71^. Two flats are parallel if they are translations of each other (note that parallel 
flats are of the same dimension). We use the following properties of flats in our exploration. 

Proposition 7 (Properties of fiats) 

1. The intersection of a collection of flats is either empty or a flat. 

2. The intersection of a k-dimensional flat rf and a hyperplane is empty, rj, or a [k — 1)- 
dimensional flat. 

We now define 0-oriented flats. 

Definition 3 (C^-oriented flats) A flat is (9-oriented if it is the intersection of several 
0-oriented hyperplanes. 0-oriented hyperplanes themselves and the whole space TZ'^ are also 
0-oriented flats. 

In particular, the lines formed by the intersections of C>-oriented hyperplanes are called 
0-oriented lines. 

Since every C)-oriented hyperplane is parallel to one of the hyperplanes of the orientation 
set O, every 0-oriented flat is parallel to some flat formed by the intersection of several 
elements of O. If the point o is the intersection of several elements of O, then every point 
in TZ^ is an (9-oriented flat. 

For example, the intersections of the four planes of the orientation set given in Figure 4(b) 
form six different lines through o and every 0-oriented line for this orientation set is parallel 
to one of these six lines. The point o is also the intersection of the elements of this set O; 
thus, all points are 0-oriented. 

Lemma 8 Every 0-oriented flat is strongly 0-convex. 

Proof. If points p and q are in an 0-oriented flat, then the 0-block of ]) and q is contained 
in this flat, since the 0-block is a subset of every 0-oriented hyperplane through p and q 
and the flat is equal to the intersection of these hyperplanes. O 

Can a flat be strongly 0-convex if it is not 0-oriented? If 0 is a flnite or closed countably 
inflnite set, the answer to this question is negative: only 0-oriented flats are strongly 0- 
convex (see Theorem 10). If 0 is not closed, then strong 0-convexity is equivalent to strong 
convexity with respect to the closure of 0 (Corollary 4).   In this case, all hyperplanes in 
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Figure 10: Construction to show that all lines are (Pgc-lines. 

the closure of O and all intersections of these hyperplanes are strongly 0-convex flats, even 
though some of them are not (9-oriented. For closed uncountable C, points and lines are 
strongly 0-convex only if they are C^-oriented (see Theorem 11), whereas higher-dimensional 
flats may be strongly 0-convex even if they are not 0-oriented, as we show in the following 
example. 

Example 1: A strongly 0-convex flat may not be C)-oriented. 
Let (9sc be the orientation set in three dimensions that includes all planes through o whose 
angle with the "horizontal" plane is at least 7r/3 (where any plane through o can serve as 
the horizontal plane). We illustrate the construction of the orientation set Osc in Figure 9, 
where the horizontal plane is shown by dashed lines. The set contains the (uncountably 
many) planes shown by solid lines and all the rotations of these planes around the vertical 
axis. The index "sc" stands for "standard convexity," as we show that strong Csc-convexity 
is equivalent to standard convexity. 

We now demonstrate that every line through o is the intersection of two elements of Osc- 
An informal proof of this claim is illustrated in Figure 10, where E\ and Ei are elements of 
Csc and the horizontal plane is shown by dashes. In Figure 10(a), the intersection of B.\ and 
E2 is a horizontal line. Now suppose that we rotate E^ around the vertical axis z^ until it 
reaches the position shown in Figure 10(b). We then rotate Ei around the horizontal axis 
x, until it becomes as shown in Figure 10(c). At all times Ei remains an element of O. 
The intersection of E\ and E^ is always a line, whose position continuously changes from 
horizontal to vertical. Since every rotation around the vertical axis z maps O^c into itself, 
we conclude that every line through 0 can be formed by the intersection of two elements 
of Csc 

Since translations of elements of O^c are C^sc-oriented planes, we conclude that every line 
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is the intersection of two Ogc-oriented planes; therefore, every line is strongly Og 
According to Lemma 6, if every line is strongly convex, then strong convexity is equivalent 
to standard convexity; therefore, every plane is strongly C^sc-convex. We have shown that 
all planes are strongly Csc-convex, whereas some planes are not Osc-oriented. 

Note that, if we define 0[^ as the set of planes through o whose angle with some vertical 
plane is at least 7r/3, then strong convexity for 0[^ is also equivalent to standard convexity. 
This example demonstrates that the notions of strong convexity for different closed orien- 
tation sets can be equivalent, which means that Property 5 of strongly O-convex sets (see 
Lemma 2) does not hold in three dimensions. □ 

In the following result, we characterize strongly (9-convex flats in terms of C-oriented 
flats. 

Theorem 9 For a closed orientation set O, a flat t] is strongly 0-convex if and only if, for 
every two points ofrj, there is an O-oriented flat through them that is contained in rj. 

Proof. Suppose that, for every p^q ^ r), there is an C^-oriented flat H Crj through p and 
q. Since H is strongly 0-convex (Lemma 8), C-block(p, ^) C H C T]. Thus, for every two 
points of 7], their C^-block is in r/; therefore, rj is strongly O-convex. 

Suppose, conversely, that r] is strongly 0-convex and consider two points, p and g, of r/. 
Let H be the intersection of all 0-oriented hyperplanes through p and q; then, H is an 
O-oriented flat. We show, by contradiction, that H C rj. 

Suppose that H is not in r/. Now, H Or] is a. strongly C-convex flat whose dimension is 
less than the dimension of H. Let u be the middle point of the straight segment joining p 
and q. Since 0-hlock(p, q) Q H Ht] and the dimension of if fl 7/ is less than the dimension 
of H, we conclude that, for every ball Su centered at «, if fl S'„ ^ 0-h\ock{p, q). Therefore, 
for every ball Su centered at u, there is an 0-oriented layer of p and q that does not contain 
HnSu. 

If a layer of p and q does not contain H f] Su, then each boundary hyperplane of this 
layer intersects Su and does not contain H. Thus, we can select a sequence of C-oriented 
hyperplanes through p that do not contain H such that the distances from these hyperplanes 
to u converge to zero. Selecting a convergent subsequence of this sequence and taking its 
limit, we get an 0-onented hyperplane through p and q that does not contain H, which 
contradicts the deflnition of H. (Recall that we have defined H as the intersection of all 
C-oriented hyperplanes through p and q.) O 

We have demonstrated that every 0-oriented flat is strongly O-convex (Lemma 8). We 
next show that, for finite and closed countably infinite orientation sets, only 0-oriented flats 
are strongly 0-convex. 

Theorem 10 If O is a closed countable set, a flat is strongly 0-convex if and only if it is 
0-oriented. 

Proof. By Lemma 8, an 0-oriented flat is strongly 0-convex. To prove the converse, 
suppose that O is countable and consider a strongly 0-convex flat rj that is not 0-oriented. 
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We denote the dimension oi rj hy k. For every C^-oriented flat contained in ?;, it dimension 
is at most (k — 1). 

Let p be some point of rj. The set of (9-oriented hyperplanes through p is countable. The 
intersections of these hyperplanes form countably many 0-flats. Therefore, there are only 
countably many 0-oriented flats through p contained in ')]. Since the dimension of these 
flats is at most {k — 1), they do not cover r]. Thus, there is a point qmr) such that no O- 
flat through p and q is contained in 7}. Therefore, by Theorem 9, rj is not strongly C-convex. □ 

For lines and points, the analogous result holds even when an orientation set is uncount- 
able: for closed O, only 0-oriented lines and points are strongly 0-convex. 

Theorem 11 If O is a closed orientation set, then a line or point is strongly 0-convex if 
and only if it is 0-oriented. 

Proof. Every 0-oriented flat is strongly C-convex; it remains to prove the "only if" part. 
We flrst prove it for a point and then for a line. 

Suppose that a point p is strongly 0-convex. If p = g, then the "H-oriented layer of p 
and q is just the hyperplane through p parallel to H. Therefore, the 0-block of p and q is 
the intersection of all 0-ovienied hyperplanes through p. Since p is strongly 0-convex, this 
0-block is contained in p. Therefore, p is the intersection of C-hyperplanes and, hence, it is 
(9-oriented. 

Now suppose that a line / is strongly 0-convex and let p and q be two distinct points 
of /. By Theorem 9, there is an 0-oriented flat through p and q contained in /. Since the 
only flat through p and q contained in / is / itself, we conclude that / is 0-oriented. □ 

For a given orientation set O, we define O as the set of all strongly 0-convex hyperplanes 
through 0. For example, consider the three-dimensional orientation set Osc, described in 
Example 1, which contains the planes whose angle with the horizontal plane is at least 7r/3. 
We have shown that all planes are strongly convex for Osc', thus, Osc contains all planes 
through 0. 

We consider the notion of strong 0-convexity, which is strong convexity with respect to 
the orientation set O. Observe that, since every 0-oriented hyperplane is strongly 0-convex, 
we have O Q O; therefore, every strongly 0-convex set is strongly 0-convex (Corollary 4). 
We next show that the converse also holds: every strongly 0-convex set is strongly 0-convex. 

Theorem 12 

1. Strong 0-convexity is equivalent to strong 0-convexity. Moreover, for every orientation 
set 0\, if strong Oi-convexity is equivalent to strong 0-convexity, then 0\ C O. 

2. Strong Oi-convexity is equivalent to strong 02-convexity if and only if Oi = O2. 

Proof. 
(1) We prove the equivalence by demonstrating that, for every two points p and q, we 
have 0-hlock{p, q) = 0-hlock{p,q). Without loss of generality, we assume that O is closed 
(Lemma 3). 
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Figure 11: Proof of Theorem 12. 

Since O is a subset of O, we immediately conclude that 5-block(p, q) C C>-block(p, q) 
(Lemma 3). To prove the converse inclusion, we show that, for every 0-oriented layer of p 
and g, ^-block(p, g) is a subset of this layer; that is, if a point u is not in the layer, then it 
is not in the 0-block(p, q) either. 

Let "H-layerd), q) be an (5-oriented layer, with boundary hyperplanes Hp (through p) and 
Hq (through g), and let u be a point outside of 7^-layer(|), g) (see Figure 11). Since Hp and 
Hq are 0-oriented, they are strongly 0-convex. 

First, suppose that Hp = Hq^ that is, q is in Hp. Then, the 0-block of p and g is a subset 
of Hp., because Hp is strongly C-convex; therefore, u is not in 0-block(p, g). 

Next, suppose that Hp and Hq are distinct hyperplanes. Without loss of generality, 
we assume that Hp is between u and Hq (Figure 11). Then, the segment joining q and u 
intersects Hp\ we denote the point of their intersection by v. Since O is closed, we conclude, 
by Theorem 9, that there is an 0-oriented flat r] through p and v that is contained in Hp. 
By the definition of 0-flats, rj is the intersection of several C'-oriented hyperplanes; since 
u ^ r), one of these hyperplanes, say T^i, does not contain u. Then, q is not in Hi either and 
u and q are "on different sides" of Hi. Therefore, u is not in the Wi-layer of p and q. Since 
the T/i-layer is (9-oriented, we conclude that u ^ 0-hlock{u,v). 

Finally, we have to show that, if strong Ci-convexity is equivalent to strong O-convexity, 
then Oi C O. If the two convexities are equivalent, then O contains all the strongly (Pi- 
convex hyperplanes through o. Since every ^i-oriented hyperplane is strongly Oi-convex, 
we conclude that Oi C O. 

(2) Since strong C^i-convexity is equivalent to strong ^i-convexity and the same holds for 
O2: we conclude that, if Oi = O2, then strong Oi-convexity is equivalent to strong O2- 
convexity. On the other hand, if strong 0i-convexity is equivalent to strong C'2-convexity, 
then every hyperplane is strongly Oi-convex if and only if it is strongly 02-convex; therefore, 
by definition, ^1 = O2. ° 

We conclude from the first part of Theorem 12 that O is the maximal orientation set for 
which strong convexity is equivalent to strong C)-convexity. The second part of Theorem 12 
is a generalization of Property 5 of planar strong convexity (see Lemma 2). It provides a 
necessary and sufiicient condition for the equivalence of strong convexity for two different 
orientation sets. 

We thus have shown that, for every orientation set O, there is a unique maximal set for 
which strong convexity is equivalent to strong 0-convexity. On the other hand, there may 
not be a unique minimal orientation set for which strong convexity is equivalent to strong O- 
convexity. For example, suppose that O is an orientation set in two dimensions that contains 
all lines through o. Strong convexity with respect to some orientation set Oi is equivalent 
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Figure 12: Proof of Lemma 15. 

to strong C)-convexity if and only if the closure of O^ is O (see Part 5 of Lemma 2). The 
collection of all such orientation sets does not have a unique minimal element. In fact, it 
does not have any minimal elements. For every set O^ whose closure is O, we can construct 
a proper subset of Ox whose closure is also O, by removing some line from Ox. 

Corollary 13 For every O, the set O is closed. 

Proof. Let Od be the closure of O. By Lemma 3, strong Od-convexity is ^equivalent to 
strong ^-convexity. Therefore, by Theorem 12, Od C O, which implies that Od = O.      □ 

We now establish the strong 0-convexity of the affine hull of a strongly O-convex set. 
The affine hull r/ of a set P is the minimal flat that contains P. In other words, it is the 
intersection of all flats that contain P (recall that the intersection of flats is a flat). For 
example, the affine hull of a straight segment is a line, the affine hull of a triangle is a 
two-dimensional plane, and the affine hull of a ball is the whole space. 

Next, we define the relative interior of a set P in its affine hull 1]. Since 7/ is a lower- 
dimensional space, we can speak of the interior of P within this space; this interior is called 
the relative interior of P. For example, suppose that P is a triangle in 11^ and t] is the plane 
that contains this triangle. The interior of the triangle in 1Z^ is empty. On the other hand, 
its relative interior includes all points except the sides of the triangle, since only the sides 
make the boundary of the triangle within the two-dimensional space rj. We use the following 
property of relative interiors in our exploration [Griinbaum et al, 1967]. 

Proposition 14 If P is a convex set and rj is the affine hull of P, then the relative interior 
of P in r] is nonempty. 

The next result gives an important property of the affine hulls of strongly 0-convex sets, 
which we use in characterizing strongly C>-convex sets in terms of halfplane intersections (see 
Lemma 19). 

Lemma 15  The affine hull of a strongly 0-convex set is strongly 0-convex. 

Proof. Let P be a strongly 0-convex set and i] be the afl&ne hull of P (see Figure 12). 
Since P is convex, the relative interior of P in ?? is nonempty. Therefore, we can choose an 
interior point u in P and a ball Su Q P centered at u. (Note that Su is a ball in the space 
ri rather than in 11^; this ball is shown by the dashed circle in Figure 12.) 

We have to show that, for every two points p and q of ?;, the 0-block of these two points 
is in rj. Let v be a point in Su such that the line through u and v is parallel to the line 
through p and q (Figure 12). The (9-block of u and v is in P; therefore, it is in r]. The 
0-block of p and ^ is a scaled version of 0-hlock{u, v); therefore, it is also in rj. □ 
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6    Strongly convex halfspaces 

We now study the properties of strongly C^-convex halfspaces and show that their role in 
strong (9-convexity is similar to the role of halfspaces in standard convexity. We present, 
in Theorems 17 and 18, strong-convexity analogs of the supporting-planes and halfspace- 
intersection properties of convex sets (see Section 1). We characterize strongly 0-convex 
sets in terms of supporting hyperplanes and in terms of halfspace intersections. 

We begin by characterizing strongly C-convex halfspaces in terms of their boundaries. 

Theorem 16 A halfspace is strongly 0-convex if and only if its boundary is a strongly 
0-convex hyperplane. 

Proof. Let P be a halfspace and H be its boundary hyperplane. Suppose that H is 
strongly 0-convex. We show that P is strongly 0-convex by demonstrating that it is strongly 
0-convex. (Recall that, by Theorem 12, strong 0-convexity is equivalent to strong O- 
convexity). Thus, we have to show that, for every two points p and q of P, the O-block of 
these points is in P. Since H is strongly 0-convex, it is 0-oriented; therefore, 0-block(p, ^) 
is a subset of the 7^-layer of p and q. This layer is parallel to the boundary H of P; therefore, 
it is contained in P. Since 0-block(p, q) is contained in the ?i-layer of p and g, we conclude 
that 0-h\ock{p,q) is in P. 

Now suppose, conversely, that the boundary ?^ of a halfspace P is not strongly 0-convex. 
Then, there are points p and q m 7i such that 0-block(p, q) is not in H. The 0-block is 
centrally symmetric with respect to the middle point of the straight segment joining p and 
q; therefore, it is not contained in either of the halfspaces with boundary H. Thus, p and q 
are in P and their 0-block is not in P; therefore, P is not strongly 0-convex. □ 

We next describe supporting hyperplanes of strongly 0-convex sets. A hyperplane sup- 
ports a set if it "touches" the set in some of its boundary points and does not cut the set 
in two parts. For example, if we put a three-dimensional object on a table, then the surface 
of the table is a plane that supports the object. To put it more formally, a hyperplane H 
supports a set P if the intersection of H and the boundary of P is nonempty and P is 
contained in one of the two halfspaces whose boundary is 7{. 

We can describe standard convex sets in terms of supporting hyperplanes: a closed set 
with a nonempty interior is convex if and only if, for every point of its boundary, there is 
a supporting hyperplane through this point. We now generalize this property to strongly 
0-convex sets. 

Theorem 17 A closed set with a nonempty interior is strongly 0-convex if and only if for 
every point in the boundary of the set, there is a strongly 0-convex hyperplane through this 
point that supports the set. 

Proof. Let P be a closed set with a nonempty interior. Suppose that, for every point r 
of P's boundary, there is a strongly 0-convex hyperplane through r that supports the set. 
Then, for every boundary point r, there is a strongly 0-convex halfspace with boundary 
through r that contains P.  Clearly, he intersection of all such halfspaces is the set P.  By 
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Figure 13: Proof of Theorem 17. 

(c) 

Theorem 16, these halfspaces are strongly 0-convex; therefore, their intersection P is also 
strongly 0-convex. 

Suppose, conversely, that P is strongly 0-convex and let r be a point in the boundary 
of P. Since P is convex, its boundary in some neighborhood of r can be viewed as a graph 
of some convex function /. 

First, we consider the case when r corresponds to a regular point of the function /, which 
means that the function is differentiable at this point. Then, there is exactly one supporting 
hyperplane H through r. We have to prove that this hyperplane is strongly C)-convex. For 
convenience, we view "H as a horizontal plane and P as being below Ti (see Figure 13a). We 
prove that Ti is strongly O-convex by contradiction. 

Suppose that H is not strongly 0-convex. Then, the halfspace with boundary H that 
contains P is not strongly 0-convex either (Theorem 16). Therefore, there are points p 
and q in this halfspace such that 0-block(p, q) is not in the halfspace (Figure 13a). Without 
loss of generality, we assume that p and q are not in H (if p or g is in "H, we can move these 
points down "a Httle bit," in such a way that a part of 0-block(p, q) remains above H). 

Let us choose some point r' € 0-block(p, q)f\'H and translate 0-block(p, q) in such a way 
that r' becomes identical to r (Figure 13b). Next, we scale 0-block(p, q) in such a way that 
the point r' of the C^-block remains identical to the point r of the set P (Figure 13c). Since 
the function / is differentiable at r, for a sufficiently small scaled version the C)-block, the 
points p and q are below the graph of the function; that is, they are in P (Figure 13c). On 
the other hand, a part of the scaled version of £)-block(p, q) is above H and, hence, outside 
P. Since a translation and a scaled version of an C-block is an C)-block, we conclude that 
there are two points of P such that the O-block of these points is not in P, contradicting 
the assumption that P is strongly 0-convex. 

Next we consider the case when r is not a regular point; that is, /is not differentiable 
at r. Then, there may be more than one supporting hyperplane through r. We have to show 
that at least one of these hyperplanes is strongly 0-convex. 

Since / is a convex function, it is a function of locally bounded variation. Functions 
of bounded variation are differentiable "almost everywhere," which means that the set of 
nonregular points is of measure zero. Therefore, there is a sequence of regular points in 
the graph of / convergent to r. The supporting hyperplane through each of these points is 
strongly 0-convex. 

We can select a convergent subsequence from this sequence of supporting hyperplanes; let 
H be the limit of this subsequence. Then, r eH and, since the set O of strongly 0-convex 
hyperplanes is closed (Corollary 13), H is strongly C)-convex.  It remains to show that H 
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Figure 14: Proof of Theorem 18. 

supports P. If H does not support P, then, since P is convex, H intersects the interior of 
P. Let u be an interior point of P that belongs to Ti and 5*,^ C P be an open ball centered 
at u. Then, some hyperplane of the convergent subsequence intersects S'„ and, therefore, 
this hyperplane does not support P, yielding a contradiction. □ 

To see that the analogous result does not hold for sets with an empty interior, let us 
consider an O-oriented plane H (say, in three dimensions) and a nonconvex set P contained 
in H. Then, for every point in P's boundary, iJ is a supporting plane through this point; 
however, P is not strongly 0-convex since it is not convex. 

Our next goal is to generalize the halfspace-intersection property of convex sets: every 
closed convex set is the intersection of the halfspaces that contain it. We first show that an 
analogous result holds for strongly 0-convex sets with a nonempty interior. 

Theorem 18 A closed set with a nonempty interior is strongly 0-convex if and only if it 
is the intersection of strongly 0-convex halfspaces. 

Proof. The intersection of strongly 0-convex sets is strongly O-convex; therefore, if a set 
P is the intersection of strongly 0-convex halfspaces, then P is strongly 0-convex. 

Suppose, conversely, that P is a strongly 0-convex set with a nonempty interior. To 
demonstrate that P is the intersection of strongly 0-convex halfspaces, we show that, for 
every point p ^ P, there is a strongly 0-convex halfspace that contains P and does not 
contain p. 

Let q be an interior point of P and r be a point of the intersection of the straight segment 
joining p and q with P's boundary (see Figure 14). Note that, since P is closed, r ^ p. By 
Theorem 17, there is a strongly 0-convex hyperplane Ji through r that supports P. (We 
show this hyperplane by a solid line in Figure 14.) Since q is an interior point of P, we 
conclude that q ^H] therefore, p ^ H. Thus, P and p are "on different sides" of H, which 
means that the halfspace with boundary H that contains P does not contain p. □ 

This result can be readily generalized to nonclosed sets if we use open halfspaces, that is, 
halfspaces that do not contain their boundaries. A set with a nonempty interior is strongly 
0-convex if and only if it is the intersection of strongly 0-convex open halfspaces. 

We next characterize strongly 0-convex sets with empty interiors in terms of the inter- 
sections of lower-dimensional strongly 0-convex halfspaces. For a given set P, we consider 
the affine hull r] of P. Since ?] is a lower-dimensional space, we can speak of halfspaces within 
this space; we call them rj-halfflats. For example, a ray is a one-dimensional halfflat and a 
halfplane (say, in 71^) is a two-dimensional halfflat. 
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If P is a strongly 0-convex set, then the relative interior of P in its affine hull rj is 
nonempty (Proposition 14). Using this observation and Theorem 18, we demonstrate that 
P is the intersection of strongly 0-convex r/-halfflats. 

Lemma 19 Let P be a closed strongly 0-convex set and t] be the affine hull of P. Then, P 
is the intersection of strongly 0-convex rj-halfflats. 

Proof. Let k be the dimension of t]. We treat t] as an independent fc-dimensional space 
and define the orientation set On in this space as follows: & [k — l)-dimensional flat H C rj 
is Or,-onented if it is the intersection of r] with some 0-oriented hyperplane. Note that, if 
a hyperplane intersects r] and does not contain ??, then its intersection with rj is & (k — 1)- 
dimensional flat (Proposition 7). Therefore, every C>-oriented hyperplane that intersects and 
does not contain 7] gives rise to an 0^-oriented {k — l)-dimensional flat. 

We next observe that, for every two points p and q oi rj, a set is an 0^-oriented layer 
of p and q if and only if it is the intersection of an C-oriented layer of p and q with r). 
This observation implies that, for every two points p and q of t], we have On-hlock{p,q) = 
0-hlock{p, q) n r). Since t] is strongly C>-convex (Lemma 15), 0-block(p, q) is in t]; therefore, 
Orj-hlock{p,q) = 0-block(p, ^). We conclude from this equaHty that a set contained in rj is 
strongly O^-convex if and only if it is strongly 0-convex. 

. Since P is strongly 0-convex, it is convex; therefore, its relative interior in rj is nonempty 
(Proposition 14). On the other hand, since strong (P^-convexity is equivalent to strong 
0-convexity, P is strongly C^-convex. Therefore, by Theorem 18, P is the intersection of 
strongly ^-convex ?;-halfHats. n 

We next describe a condition under which all strongly 0-convex sets, even those with an 
empty interior, are formed by the intersections of strongly 0-convex half spaces. We show 
that, if every strongly 0-convex flat is the intersection of strongly 0-convex hyperplanes, 
then every strongly 0-convex halfflat is the intersection of strongly 0-convex halfspaces, in 
which case all strongly 0-convex sets are formed by the intersections of strongly 0-convex 
halfspaces. 

Theorem 20 Every closed strongly 0-convex set is the intersection of strongly 0-convex 
halfspaces if and only if every strongly 0-convex flat is the intersection of strongly 0-convex 
hyperplanes. 

Proof. Suppose that every closed strongly 0-convex set is the intersection of strongly 
0-convex halfspaces and consider a strongly 0-convex flat i]. We note that, if a halfspace 
contains 77, then either r) is wholly contained in the interior of the halfspace or ri is wholly 
in the boundary of the halfspace. We consider the collection C of all the strongly 0-convex 
halfspaces whose boundaries contain 77. 

Clearly, the intersection of this collection C of halfspaces is equal to the intersection of 
the collection of all the strongly 0-convex halfspaces that contain rj. Since rj is & closed 
strongly 0-convex set, this intersection is exactly rj. Since rj is wholly contained in the 
boundary of every halfspace in C, we conclude that tj is the intersection of the boundaries 
of the halfspaces in C.   By Theorem 16, the boundaries of strongly 0-convex halfspaces 

19 



are strongly 0-convex hyperplanes; therefore, r] is the intersection of strongly 0-convex 
hyperplanes. 

Now suppose, conversely, that every strongly (9-convex flat is the intersection of strongly 
0-convex hyperplanes. To prove that every closed strongly 0-convex set is the intersection of 
strongly 0-convex halfspaces, we use the definition and properties of the lower-dimensional 
orientation set Or^ presented in the proof of Lemma 19. 

We consider a strongly 0-convex set P with the affine hull rj. By Lemma 19, P is the 
intersection of strongly 0-convex ?;-halfflats. We demonstrate that P is the intersection of 
strongly 0-convex halfspaces by proving that every strongly O-convex r/-halfflat Q is the 
intersection of strongly 0-convex halfspaces. 

Let H be the boundary ofQ'mri {H is a (A; - l)-dimensional flat). We have shown in the 
proof of Lemma 19 that strong (9^-convexity is equivalent to strong 0-convexity. Since Q is 
strongly 0-convex, it is strongly 0^-convex; therefore, its boundary H is also strongly O^- 
convex (Theorem 9) and, hence, H is strongly 0-convex. Therefore, H is the intersection of 
strongly 0-convex hyperplanes. At least one of these hyperplanes, say H, does not contain 
r]. We then readily see that the j^-halfflat Q is the intersection of r] and a half space with 
boundary 'H. 

Finally, we note that, since r] is strongly 0-convex, it is the intersection of strongly 
O-convex hyperplanes and every strongly C^-convex hyperplane is the intersection of two 
strongly 0-convex halfspaces. Thus, t] is the intersection of strongly 0-convex halfspaces. 
Since Q is the intersection of rj with a strongly 0-convex halfspace, we conclude that Q is 
the intersection of strongly O-convex halfspaces. n 

We next show that, for closed countable orientation sets and for all orientation sets 
in three dimensions, every strongly 0-convex flat is the intersection of strongly 0-convex 
hyperplanes. 

If O is a finite or closed countably infinite orientation set, then every strongly 0-convex 
flat is 0-oriented (Corollary 10). Therefore, every strongly 0-convex flat is the intersection 
of 0-oriented hyperplanes, which are strongly 0-convex. 

In three dimensions, there are only three types of flats: planes, lines, and points. A 
strongly 0-convex plane in three dimensions is a strongly 0-convex hyperplane. Strongly 
0-convex hnes and points are 0-oriented (Theorem 11); therefore, they are formed by inter- 
sections of 0-oriented hyperplanes. Thus, every strongly 0-convex flat in three dimensions 
is the intersection of strongly 0-convex hyperplanes, even for uncountable O. 

Applying Theorem 20 to these two special cases, we obtain the following results. 

Corollary 21 

1. If O is a dosed countable orientation set, then every dosed strongly 0-convex set is 
the intersection of strongly 0-convex halfspaces. 

2. In three dimensions, every dosed strongly 0-convex set is the intersection of strongly 
0-convex halfspaces. 

To summarize, we have demonstrated that a strongly 0-convex set can be characterized 
in terms of halfspace intersection if at least one of the following three conditions holds: the 
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interior of the set is nonempty, the orientation set O is finite or countably infinite, or the 
space is three-dimensional. If none of these conditions hold, we can characterize a strongly 
0-convex set through the intersection of halfflats of the set's affine hull. 

If an orientation set O is finite, then the intersection of strongly 0-convex halfspaces is 
a convex polytope with C)-oriented facets. Thus, the following result describes strongly O- 
convex sets for finite O; this result is analogous to Property 6 of planar strong C^-convexity 
(see Lemma 2). 

Corollary 22 For a finite orientation set O, a set with a nonempty interior is strongly 
0-convex if and only if it is a convex polytope whose facets are 0-oriented. 

If O is an infinite orientation set, a polytope may be strongly 0-convex even if its 
facets are not 0-oriented. For example, if O is a (countable or uncountable) set whose 
closure contains all hyperplanes through o, then strong 0-convexity is equivalent to standard 
convexity and, hence, every convex polytope is strongly 0-convex. 

7    Concluding Remarks 

We described a generalization of standard convexity in higher dimensions, called strong O- 
convexity, and demonstrated that a number of the major properties of strongly 0-convex 
sets are similar to properties of standard convex sets. 

We also estabHshed three important properties of strongly 0-convex sets: the character- 
ization of strongly 0-convex flats in terms of 0-flats (Theorem 9), the strong 0-convexity 
of the affine hull of a strongly 0-convex set (Lemma 15), and a condition of the equivalence 
of strong convexity for two different orientation sets (Theorem 12). 

The presented work is just a beginning; it leaves many unanswered questions, which 
we are currently trying to address. First, we have not studied the computational aspects 
of strong convexity, such as finding strongly 0-convex hulls. Second, we are exploring 
an alternative generalization of convexity, called restricted-orientation convexity [Rawlins, 
1987], in higher dimensions [Fink and Wood, 1995a, Fink and Wood, 1995b]. Third, we plan 
to explore other generalizations of convexity. For example, the notion of NESW convexity 
[Rawlins, 1987, RawHns and Wood, 1989] can be generaUzed to higher dimensions. 
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